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Chapter 10 

CGP, Creativity and Art 

Steve DiPaola & Nathan Sorenson 

 

 

This chapter looks at evolved art and creativity Cartesian Genetic Programming 

(CGP). Besides an overview of evolutionary art, we discuss our work in modelling of 

artistic creativity based on the notion of contextual focus, which is the tendency for 

creative individuals to exhibit both focused concentration on a precise goal, as well as 

broad, associative though processes, which produce radical departures from convention. 

The model’s implementation relies on the use of Cartesian Genetic Programming, which 

provides the essential property of genetic neutrality, which permits contextual fluidity. 

The model is used to generate creative portraits of Darwin, which serve to illustrate the 

focused and exploratory aspects of the creative process. 

10.1 Introduction 

A new field that has emerged over the last ten years in artificial intelligence systems is 

creative evolutionary systems. Creative evolutionary systems is used to evolve 

aesthetically pleasing structures in art, music and design. Within computer visual art, 

these systems are often referred to as evolutionary art systems.  

 

The creative evolutionary systems research discussed in this chapter is based on Ashmore 

and Miller's work [21], which uses Cartesian Genetic Programming (CGP) first 

developed by Miller. CGP uses typical Genetic Programming (GP) evolutionary 

techniques (crossover, mutation, and survival), but has many features that we make 
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document of in this chapter that allow the GP system to favour creative solutions over 

optimized solutions. Portrait painting was chosen for this project as it limits the creative 

space of all art paintings, weighs towards resemblance (similarity), and has a known 

portrait sitter/painter relationship well suited to explore computer creativity. Our system 

uses the same approach as Miller has discussed in Chapter 2, that is, the system generates 

portraits images using CGP where the two dimensional image pixel coordinates are the 

inputs to a CGP genotype that produce three 0 to 255 color outputs for each pixel in the 

two dimensional image array. In our case, those outputs are in HSV (Hue, Saturation and 

Value) space and our main contribution is in adding an autonomous creative fitness 

function to the system based on cognitive science research on human creativity.  

 

According to Bentley from his seminal book on the subject [18], a creative evolutionary 

system is designed to 1) aid our own creative process and, 2) generate results to problems 

that traditionally required creative people to find the solutions. Bentley goes on to state 

that in achieving these goals, a creative evolutionary system may also appear to act 

'creatively' - although this is still a source of debate. Unlike general evolutionary 

computation systems, creative evolutionary systems have been criticized because most of 

these systems use the presence of a human (often playing the role of the creative decision 

maker or fitness function) to guide the direction of the evolutionary search. Our CGP 

based portrait painter system specifically uses an automatic fitness function, albeit 

specific to a portrait painting where a portrait  sitter resemblance is encouraged, thereby 

attempting to work through the human fitness function dilemma and directly explore how 

computer algorithms can be autonomously creative. 

10.2 Creativity and Art 

Certainly, creativity is a broad and complex notion that does not permit simple 

characterization. Creativity can be seen as a quality pertaining to both historical 

movements and solitary events, as a defining characteristic of both societies and 

individual, with understandable contention regarding the degree to which these 

instantiations are governed by the same phenomenon. Despite the inherent difficulties in 

constructing a comprehensive definition, much progress has been made in the 

characterization of creativity as an associative process. Indeed, Poincare's famous 

metaphor of disparate ideas that "rise in crowds" and "collide until pairs interlock" [2] 

seems only to be affirmed by recent work in neuroimaging technologies: an increase in 

associative brain activity can be seen during moments of creative thought, as new 

neurological connections between association cortices are formed [21]. This dynamic 

associative process is certainly linked with the ability that creative individuals have to 

make surprising and unanticipated departures from existing modes of thought. 

 

In fact, case-study research demonstrates that creators often work in highly structured 

domains with well-specified rules against which they ultimately rebel [27, 18]. The 

traditional forms of the portrait, the sculpture, or the symphony become a point of 

departure for the truly creative artist. This is not to say Picasso, Michelangelo, and 

Stravinsky were not masters of the traditional forms; indeed it is precisely their mastery 

of existing techniques which made their innovations possible. In this sense, creativity is 
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not simply the capacity to eschew traditional modes, but rather the ability to internalize 

and master them while still making associative connections that were previously not 

possible. This broad, associative imagination and narrow, focused mastery are two 

opposite impulses which characterize the creative thought process. As Feist states, "It is 

not unbridled psychoticism that is most strongly associated with creativity, but 

psychoticism tempered by high ego strength or ego control. Paradoxically, creative 

people appear to be simultaneously very labile and mutable and yet can be rather 

controlled and stable" [22]. Many theorists recognize the existence of comparable types 

of thought [12, 28, 14, 25]. Furthermore, many suggest that the ability to easily transition 

between these two modes is a defining characteristic of creativity [18, 29, 3]. This 

fluidity of mind is termed contextual focus [29], and requires both focused attention 

(typically linked with abstract thought and logical deduction) and a broad, expansive 

perspective (suited to the apprehension of unexpected correlations).  

 

This dynamic contextual focus is the focus of this paper. In order to explore the nature of 

computational creativity, we develop a system to evolve artistic portrait paintings and 

implement a model of contextual focus to generate and evaluate artwork automatically. 

Our creative system simultaneously follows the precise and highly structured goal of 

representation, as well as the vague and associative notion of aesthetic quality. 

10.3 Evolutionary Systems and Creativity 

It is evident that the domain of artistic expression is particularly well suited to questions 

of machine creativity, as the standard techniques of domain-agnostic artificial-

intelligence search do not apply. The process of creating art has no well-defined expected 

outcome; one cannot generate a creative artwork in the same way one can search for an 

effective chess move or compute an optimal load-bearing bridge design. There is simply 

no readily identifiable "problem" to be solved. The process used to formulate this 

problem definition is analogous to the artists struggle to realize an underlying vision to 

guide a work of art. This lack of a clear problem specification is exactly the sort of issue 

that both necessitates creative thought and makes its presence most evident. 

 

Systems such as Harold Cohen's AARON [12] and Karl Sims genetic images [13] have 

popularized the notion that machines can autonomously produce output of aesthetic 

value. However, critics argue that the output is simply a function of the creativity of the 

system's designer, and not truly located within the machine. Indeed, how can the 

recognizable style of AARON be attributed to the machine and not its creator? Similarly, 

the evolution of the images produced by Sims' genetic system is directly guided by 

human interaction. Before we can claim to have embedded any degree of creativity 

within an automated system, it must be shown that the designers and users of that system 

are not ultimately responsible for the aesthetic decisions the system makes. We attempt to 

achieve autonomy by explicitly modelling the psychological process of contextual focus 

as a central component of our creative painter. It, therefore, exhibits the ability to 

evaluate its own designs in both a focused mode, with an adherence to a specific and 

well-defined goal, and also a broad, imaginative mode where more flexible judgment 

criteria are employed. 
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10.4 Evolutionary Art 

Speaking broadly, creative evolutionary systems that combine with the aesthetic 

decisions of a human to judge fitness started well before computers. Standard historical 

selective breeding practises, where a human selects the parents for each generation from a 

given evolved set of choices, is the basis for centuries of 'creatively' modified trees, roses, 

corn, dogs, cats, cows and so on. Current evolutionary art systems borrow from this time 

tested approach. It was evolutionary biologist Richard Dawkins who first showed with 

his “Biomorphs” program that accompanied his 1986 book “The Blind Watchmaker” 

[14] that a computer can be combined with the aesthetic preference of a user to generate 

interesting results. Dawkins work inspired artists such as William Latham and Stephen 

Todd [15] as well as Karl Sims [13]. 

 

Karl Sims' work went on to inspire many of the modern evolutionary artists today. In 

his 2D work [13], Sims used a very rich instruction set, containing image processing 

functions as well as mathematical functions based on Lisp expression trees. As with most 

evolutionary art systems to follow, Sims system evolved a number of images (16 in his 

case) and allowed the viewers to pick their favourites, thereby allowing the most 

'aesthetically pleasing' images to survive and mutate to the next generation. Other well 

known artists used similar techniques: Steve Rooke [16], also working in Lisp, is very 

well known for his artwork which added evolvable fractals to the function set; and 

Penousal Machado [17], a researcher at the Artificial Intelligence Laboratory at 

University of Coimbra, in contrast to Sims' complex function set, used a very simple 

function set which is believed to open up the possible search space.  

 

These systems, as with most creative evolutionary systems, use a human (often the 

artist or viewer under interactive control) to make the aesthetic decisions after each 

evolutionary generation. In contrast, the use of an automatic fitness function which is 

able to make qualitative judgements constitutes a uniquely challenging research problem. 

Because of this, automatic fitness functions in evolutionary art are less the norm like they 

are in the general field of evolutionary computing  However, a number of researchers are 

beginning to explore art based automatic fitness strategies: Bentley [18] in the design 

space; Miller and Thompson [19] in the field of electronic circuit construction; and John 

Koza, on his creative invention machine [20]. Automatic fitness functions for art, 

however, are especially difficult, and systems that use creative fitness functions in art are 

still quite naïve. Ashmore and Miller [21] have attempted to use an automatic fitness 

function with Cartesian GP that preferences images that contain circular objects (detected 

with a Hough Transform) or exhibit a high degree of complexity. However, this function 

only initializes a population and must defer to a human user’s input for further evolution. 

They also attempted to employ an automatic function for evolving towards a source 

image. We have based our system upon this notion of visual resemblance with a more 

sophisticated similarity function as well as adapting their system for a portrait painter 

process. 
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10.5 Genetic Programming and Creativity 

GP's successes in producing novel and, arguably, creative designs are well publicized and 

implementing the creative process in an evolutionary algorithm such as CGP is 

conceptually pleasing, as the successive evolutionary stages of variation and selection 

map well to the engagement-reflection model of creative thought [22]. Engagement—the 

generation of possible ideas and solutions—manifests itself in the composition of simple 

building blocks defined by the GP's function set. Because these basic elements can be 

extremely basic and generic, the algorithm author need not inject too much pre-existing 

assumptions about anticipated solutions, which might restrict output to a certain type and 

therefore hinder creativity. The Reflection phase of creative practices is seen in the 

fitness function of the algorithm, and our model of contextual focus can be implemented 

as operations on the fitness function, modifying it to favour either precisely defined 

problems, or broad and vague notions. 

 

The Classical GP approach poses, however, certain problems when tasked with 

modelling human creativity. Namely, GP excels at optimization problems that presume 

the existence of an optimal individual, which the search will then approximate. This is 

demonstrated by the fact that GP techniques typically use a single fitness function to 

evaluate every individual in every generation. The notion of an optimal individual is at 

odds with the process of contextually redefining and adjusting the goal of the search as it 

progresses. Indeed, problems that demand the use of creative intelligence do not have 

simple and stable evaluation criteria, and this is most certainly true of computer art, 

where the goal is not to produce an objectively optimal painting, but to explore variations 

and associations that are novel and unanticipated. Convergence to a particular individual 

solution halts exploration and stifles creativity. Indeed, regardless of the evaluation 

criteria used, if one individual in a population excels slightly better than the others, GP 

will tend to converge towards that value. By virtue of this process of optimization, 

diversity in the population is lost as all individuals assume the properties of the current 

leader. This loss of diversity has detrimental effects regarding the successful realization 

of the fluidity model of creativity: periods of narrow focus will damage the diversity of 

the population of solutions, essentially forgetting the individuals imagined during broad, 

associative phases. Returning to an associative phase from a narrow phase would 

essentially constitute starting from the scratch each time phases alternate. Clearly, this 

does not characterize the ease and fluidity that our model seeks to exhibit. Many 

solutions to the problem of maintaining diversity in evolutionary systems exist, and this is 

indeed a very well-researched subject. However, many solutions demand explicit 

organizational structures placed on them, such as sorting populations into different 

structural categories [23] or authoring a distance metric between individuals [24]. Such 

strategies rely on injecting a priori knowledge about the structure of the presumed 

solution into the system--something we wish to avoid. 

10.5.1 CGP Advantages in Creative Systems 

We use Cartesian Genetic Programming in our creative painting system as it is 

particularly well suited to avoiding these concerns. Though CGP shares with GP the same 
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general process of iterative selection and variation, it differs in its representation of the 

genotype. The encoding is not a simple tree as in GP, but is rather a graph of indexed 

nodes. Each node represents a single basic function from the original function set, and 

can have a number of inputs and outputs. When this representation undergoes mutation, 

the connectivity of the graph is altered, possibly causing some nodes to become 

disconnected from the final program output. As certain nodes do not connect to the 

output, the information they represent becomes redundant. Genetic information becomes 

latent, and this gives rise to the essential property of CGP: neutrality. The very same 

solution, or phenotype, can be the result of a wide variety of different graphs, or 

genotypes. Thus, a narrow mode of evaluation can indeed focus temporarily on 

converging towards a single individual without necessarily invoking a permanent loss of 

genetic diversity, as a subsequent broad, associative phase of exploration will still have 

access to all the latent genetic information not visibly expressed in the phenotypes of the 

population. Furthermore, not only does CGP preserve diversity, it allows us to encourage 

such latent diversity explicitly. For example, in one set of experiments we implement the 

following rule: if the fittest individual of a population is identical to an individual in the 

previous generation for more than three iterations, the system chooses other genotypes 

that map to this same phenotype in favour of the current non-progressing genotype, thus 

promoting diversity in the latent genetic material. 

10.6 Implementation 

Our work is based on Ashmore and Miller's original application of CGP to genetic art 

[21]. Their basic approach, which we essentially follow and as outline in Chapter 2, 

consists of generating graphs with two inputs: the x and y coordinates of the pixel on the 

image plane, and three outputs: the hue, saturation and value (H,S,V) colour channels for 

that pixel. It should be noted that R,G, B outputs can be used and int eh case of Miller’s 

initial work,either RGB or HSV could used.  In our system, the HSV outputs better 

support artistic colour techniques in our contextual focus based fitness function in 

evaluating 2 of the 3 ‘rules of art’ described in next section and figure 2 -- specifically 

dealing with tone (non colour graduation) separately which is represented in the V - value 

component and 2) evaluating warm and cool colour temperature ratios in the H – Hue 

component.  

 

 The functions in the function set (see Table 1) also can also use a random constant 

param as an input, which can be altered by mutation. The functions are kept intentionally 

simple and neutral to avoid imposing unnecessary structure into the ultimate results, 

allowing for a large search space. A graph of these functions constitutes an individual’s 

genotype. When this compound function is evaluated for each pixel on an image plane, 

an image is produced, which is the individual's phenotype. It is this phenotype that is 

evaluated using our creative, contextually-focused, fitness function. 
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1: x | y; 

2: param & x; 

3: (x + y) % 255; 

4: if (x>y) x - y; else y - x; 

5: 255 - x; 

6: abs (cos (x) * 255); 

7: abs (tan (((x % 45) * pi)/180.0) * 255)); 

8: abs (tan (x) * 255) % 255); 

9: sqrt ((x - param)2 + (y - param) 2); (thresholded at 255) 

10: x % (param + 1) + (255 - param); 

11: (x + y)/2; 

12: if (x > y) 255 * ((y + 1)/(x + 1)); else 255 * ((x + 1)/(y + 1)); 

13: abs (sqrt (x - param2 + y - param2) % 255); 

 

Table 1: Functions 1 through 5 use simple arithmetic operators on the x,y coordinates of 

the image. Functions 6 through 13 contain logical or trigonometric functions that are able 

to express more geometric shapes and colour graduations. 

 

As with Ashmore and Miller’s work, the genotype is stored as an array of  intergers of the 

length (n*4)+3 where n is the number of nodes, as seen in Figure 1. The last three 

integers in the chromosome are the output pointers for the Hue, Saturation and Value 

colour channels. The number of nodes in the chromosome affects the complexity of the 

output image. The greater the number of nodes will translate into more functions being 

used in defining the final  image. In CGP each node normally defines the inputs to the 

node and the function only. Our functions are limited by having outputs between 0 and 

255 for H, S and V. To increase the flexibility a further parameter has been added to each 

node which may or may not be used by the specified function.  

 

 

 
 

Fig. 1  Genotype schematic  

 

 

Mutation occurs by calculating a random point along the chromosome, where a mutation 

rate specifies how many points are randomly chosen. Since along the chromosome some 

points can represent either a pointer, a function or a parameter, the mutation behavior has 

specific constraints for each of these three types.  
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Crossover points are selected between whole nodes so data within the nodes is retained. 

To create an offspring, the nodes before the crossover point come from one parent while 

the nodes after the crossover point, including the output pointers, will come from the 

other parent. A mechanism is in place that allows for cross over to occur when parents 

have genotypes of different lengths. 

10.6.1 Fitness Function 

Ashmore and Miller's original work consisted of initializing a population of interesting 

artworks, and allowing a human user guide subsequent evolution by evaluating the 

images. Our goal is to remove the human from the system by providing an artistic 

evaluation function that produces painterly portraits and exhibits contextual focus in its 

search for an aesthetic image. The goal of portrait painting is not to perfectly reproduce 

the appearance of the subject, (especially since the advent of photography), but rather to 

evoke a creative interpretation of the sitter. Therefore, the fitness function will, at times, 

emphasize the narrow and concrete goal of subject resemblance, while at other times 

defer to the fuzzy, associative and even contradictory “rules” of abstract art, with a 

psychologically-inspired model of contextual focus determining when to switch between 

them. CGP's phenotypic neutrality [30] ensures that the system does not destroy diversity 

when it seeks the narrowly defined goal of accurate resemblance; latent genetic material 

is still available for surprising associations later in the search process.  

 
The fitness function determines resemblance by finding the mean-squared error between 

an image in the population and the source image. In our case, we take an image of 

Darwin as our subject. The abstract, painterly guidelines measure three different 

properties: the first is the composition of the face relative to the background; the second 

is the tonal similarity of the image as matched to a sophisticated artistic colour space 

model emphasizing warm-cool colour temperature relationships according to analogous 

and complementary colour harmony rules; and the third is the presence of a dominant and 

subdominant tone. These rules are drawn from the portrait painter knowledge domain, as 

detailed in [25].  
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Fig.2   Our fitness function mimics human creativity by moving between restrained focus 

(resemblance) to more unstructured associative focus (resemblance + more ambiguous art 

rules of composition, tonality and colour theory).  

 

The fitness function, then, calculates four scores for each image, (resemblance and the 

three painterly rules), using contextual-focus to inform the way in which these values are 

combined as the search progresses, as seen in Figure 2. Our model of contextual focus 

will alternate between emphasizing the highly structured goal of resemblance and 

encouraging the spontaneous exploration of the aesthetic principles of artistic 

composition.  

10.6.2 Contextual Focus 

By default, the fitness function favours resemblance by rating paintings using a ratio of 

80% resemblance to a 20% non-linear combination of our three painterly rules. Several 

functional triggers can alter this ratio in different ways. For example, as long as a 

significant proportion of high-resemblance individuals exist in the population, in our case 

80%, (“resemblance patriarchs”), the system will allow individuals with very high 

scoring under the painterly rules, (“strange uncles”), to be accepted into the next 

population. These individual with high painterly scores (weighted non-linearly to allow 

for those with a very high score in just one rule) are saved separately, and mated with the 

current population; if the system remains in this default state of focused resemblance, 

further offspring continue to be tested with the default 80% resemblance and 20% 

painterly rule test. Therefore, though we pull out and save these “strange uncles” to 

maintain artistic diversity, the focus of the genetic search is still towards resemblance. 

 

The system, as a whole, will begin to favour the artistic rules when progress towards 

resemblance slows. As mentioned in Section 4.1, when a plateau, or local minima, is 
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reached for a certain number of populations, the fitness function ratio beings to weight 

painterly rules higher than resemblance, on a sliding scale. Because artistic diversity has 

been explicitly encouraged in the focused resemblance phase, there is a great deal of 

artistically rich genetic information that is latent in the population. When the artistic rules 

are favoured over resemblance, this genetic information can manifest itself and a great 

deal of experimentation and exploration occurs. 

 

Just as we saved artistically promising individuals during the focused stage, we are 

careful to isolate individuals with high resemblance during this artistic phase. These 

individuals are similarly allowed to pass onto the next generation when a certain 

proportion of aesthetically promising individuals is satisfied. Using this method, high 

resemblance individuals always remain in the population. When the resemblance of these 

individuals shows a marked improvement beyond the previous plateau, the system returns 

again to the default focused, resemblance mode. 

10.7 Results 

This system ran on one high-end PC for 50 days. Since the genes of each portrait can be 

saved, it is possible to re-combine (marry) and re-evolve any of the art works in new 

variants (Figure 3). As the fitness score increases, portraits look more like the sitter 

(Figure 4). This gives us a somewhat known spread from very primitive (abstract) all the 

way through realistic portraits. So in effect our system has two ongoing progressing 

processes: firstly, those portraits that pass on their resemblance strategies, making for 

more and more realistic portraits—the family ``resemblance patriarchs” (Figure 4), and 

secondly, the creative ``strange uncles,” which are genetically related to the current 

resemblance patriarchs, but are exhibit greater aesthetic creativity. This dual evolving 

technique of patriarchs and strange uncles models the contextual focus of creative 

individuals as discussed in Section 1, that is the paradoxical technique where creative 

people use the existence of some strong structural rules (as in the templates of a sonnet, 

tragedy, or in this case a resemblance to the sitter image) as a resource or base to 

elaborate new variants beyond that structure (abstracted variation of the sitter image). 

That is, novel ideas require a pre-existing system to serve as a reference point from which 

innovation can occur. 
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Fig. 3 Two portrait programs are mated together showing merged strategies of the 

offspring. 

 

 

 
 

Fig. 4 Source Darwin portrait, part of the fitness function, followed by an evolved 

progression of portraits of best resemblance. 
 

 

Another point worth highlighting is the difficulty of judging quality even in a population 

of equally poor paintings, which is currently an open research question regarding 

automated fitness functions [26]. Indeed, the initial population of images the system 

produces will bear absolutely no resemblance to the portrait subject, yet it is critical that 

the population is sorted in a precise and meaningful way, in order to guide evolution 

towards an aesthetic goal. To overcome this problem, we ensure that our fitness function 

effectively evaluates images in any stage of evolution. The associative contextual mode 

of our fitness function contributes greatly to achieving this generality, as, due to its broad 

nature, it is applicable to a likewise broad range of images. So, as opposed to direct 
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resemblance, which only distinguishes between images meaningfully when there is a 

certain degree of resemblance already present, the abstract rules of colour and 

composition can be applied to virtually any image, regardless of how visually similar it is 

to its subject. Therefore, the system can switch its mental context at any point where it 

becomes difficult to distinguish between the images in its current population. Not only 

does this address the issue of ensuring effective evaluation at all stages of evolution, but 

it also models psychological creativity in a conceptually satisfying way: situations where 

there is no discernible way forward are precisely the times that call for creative 

exploration of alternatives. 

 

However, it is ultimately those individuals that doggedly strive to resemble the Darwin 

image that move the system forward, as it is they who attain the highest resemblance 

scores and strategically move the system closer to the source image from in terms of 

resemblance. By allowing their related family members to be more innovatively artistic 

(via large local exploration) as safe variants from the patriarchs, we avoid the challenges 

to creativity that optimization presents, as discussed in Section 4. Figure 5 shows both 

types of individuals working synergistically, while Figure 4 only contains the 

resemblance patriarchs. We should emphasize that our goal is not to reproduce the 

Darwin portrait, but to explore a family tree of related and living portraits that inherit 

creative painting strategies through an evolutionary process. Ultimately, it is our hope to 

extend this system to be creative in a range of artistic and design oriented spaces beyond 

artistic portrait painting. 

 

The images in Figure 5 show selected portraits in chronological order. These represent a 

larger collection, and show both those best at resemblance, as well as those that are 

artistically compelling. While the overall population improves at resembling Darwin’s 

portrait, what is more interesting to us is the variety of recurring, emergent and merged 

creative strategies that evolve as the programs seek, in different ways, to become better 

abstract portraitists.  
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Fig. 5  Portraits in chronological order, selected as examples of the process (from a larger 

sampling at http://www.dipaola.org/evolve) 

http://www.dipaola.org/evolve


 14 

10.8 Conclusion and future direction 

We have incorporated research on human creativity into the relativity new form of 

evolutionary computation, CGP, which has been successfully adapted to encourage the 

development of creative, painterly techniques. CGP exhibits genetic neutrality, which 

enables us to maintain the diversity needed to explore creative variations when faced with 

local minima. This technique proves to be well suited to the development of our 

contextual focus model of creativity, which requires the presence of such latent creative 

potential.  

 

The domain of portrait painting was chosen because it leans heavily on resemblance (a 

closed and known issue for computer algorithms), but also has an opened ended creative 

element. As well, the portrait sitter to painter relationship is well suited to exploring 

computer creativity. The system indeed evolves creative strategies to become better 

abstract portraitists. We are continually refining the painterly portions of the automatic 

fitness function from lessons learned in past runs, and we are currently adding more 

creative, structural elements to this open-ended general system.  

 

Key to this generality is increased understanding of how the potentiality of an idea 

changes and is affected by both the associative structure and the goals and desires of the 

mind it “finds itself in.” To this end, future research will involve adding specific painterly 

and portrait knowledge with the goal of continuing to improve the automatic portrait 

painter system with human painterly knowledge. In addition, it is also possible (and 

possibly the direction of our next version of the program) to evolve the associative 

aesthetic fitness function simultaneously with the rest of the system. This can alter the 

dimensionality of the search space, the parameterization, as well as the representation of 

solutions, allowing for more creative automation. 

 

Practically, to better approximate a human portraitist’s technique, we are redesigning the 

functions in the function set to be reactions to the colour and position of the sitter image 

(the current system function set is blind to the sitter image, which is only used for 

evaluation). This way, any decision on a paint stroke output is a direct reaction to the 

input recognition (what the artist sees in the sitter scene). This would mean that, once a 

pleasing portrait image (individual) is created, the program could use its same painterly 

strategies on any new sitter image, thereby creating a true portrait painter.  

 

Furthermore, a successful portraitist program might even have ‘one-man’ shows and take 

commissions, allowing its human creator to play a background role as its talent agent. It 

could eventually even be bred it with other successful portraitist programs similar to 

racing horses, allowing for experiments into cultural and collaborative creativity. This 

‘matching output stroke to input analysis’ technique with other modifications would 

facilitate the realization of another goal: to have resolution-independent portraits, 

allowing small portrait sizes for speed during the evolving process, but larger sizes that 

reveal additional painterly and surface details for final artwork—as a human might make 

many creative sketches before the fully finished work.  
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We would like to explore the extent to which techniques used here can be transported to 

other domains such as art and design, music, authoring, HCI, entertainment, and gaming. 

The mechanisms will be kept general since we believe it is the associative, domain-

general (rather than specialized, domain-specific) aspect of a creative architecture 

(organic or artificial) that is its greatest asset. Finally, we foresee a possible research 

application as a test bed for simulating creative processes or an educational tool for 

gaining hands-on understanding of evolutionary and creative processes.  
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