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Abstract—This work presents an approach to automatic video
game level design consisting of a computational model of player
enjoyment and a generative system based on evolutionary com-
puting. The model estimates the entertainment value of game
levels according to the presence of “rhythm groups,” which
are defined as alternating periods of high and low challenge.
The generative system represents a novel combination of genetic
algorithms and constraint satisfaction methods and uses the
model as a fitness function for the generation of fun levels
for two different games. This top-down approach improves
upon typical bottom-up techniques in providing semantically
meaningful parameters such as difficulty and player skill; in
giving human designers considerable control over the output of
the generative system; and in offering the ability to create levels
for different types of games.

Index Terms—Procedural content creation, challenge model-
ing, player enjoyment, fun, video games.

I. INTRODUCTION

As video games exhibit progressively expansive game en-
vironments, there has been a growing interest in employing
generative computational algorithms to mitigate the cost of
authoring game content [1]. Broadly referred to as procedural
content generation, these techniques can be seen in early
games such as Rogue [2] and Nethack [3], as well as more
recent games such as Far Cry 2 [4]. These computational tech-
niques promise to reduce the involvement of a human designer,
thereby enabling smaller development teams to create much
more content than would otherwise be possible and, because
algorithmically generated content is not as fixed as content
authored by hand, create content that is more readily adapted
to the unique preferences of individual players.

This paper presents a procedural content generation system
that is able to create game environments (levels) for a variety
of games. Our system differs from existing systems in its
adherence to a top-down approach, as opposed to a bottom-up,
rule-based approach. These bottom-up systems typically create
levels through an iterative execution of a number of production
rules or through an ad-hoc assortment deeply nested condi-
tional branches and lengthy switch statements with no princi-
pled, overarching design. 1 This lack of modularity contributes
to their reputation for being difficult to debug [6]. As well,
their idiosyncratic design ties these generative techniques to a
single game; it is not straightforward to extract generalizable
functionality from the highly specific procedural code. Finally,
bottom-up approaches often provide little artistic control over
the final output.

1Though most commercial titles are closed-source, we can see ad-hoc,
bottom-up systems in open-source titles such as Freeciv [5] and Nethack [3].

The present work adheres to a top-down orientation by
adopting an evolutionary computation approach. Level designs
are considered to be individuals in a population and levels of
high quality pass on their characteristic genetic information to
future generations. Quality is determined by high-level design
goals specified as a fitness function. This fitness function
operates solely on the final generated output and is ignorant of
the specific manner in which the content is generated, allowing
for much more generality than bottom-up approaches.

We present, first, our model of player enjoyment, which
serves as the foundation for the rest of the system. We describe
the scope of the model, justify its design by drawing from
video game research as well as analysis of existing commercial
game levels. We evaluate this model in its ability to identify
commercial-quality levels among arbitrarily generated levels.
We then show how this model is used as a fitness function in
an evolutionary system. The system is applied to two different
game contexts, demonstrating its general applicability. We
conclude with discussion of the benefits of this approach and
discuss future work.

A. Previous Work

1) Video Game Generative Systems: Procedural content
creation is an active area of research, and many different
approaches exist. A particularly ambitious project has been
the automatic generation of entire games. Cameron Browne [7]
employs genetic algorithms to construct combinatorial abstract
games similar to chess and go. He successfully produces
entertaining games using a fitness function that consists of a
weighted sum of 57 design criteria, drawn from a wide array
of sources, including psychology, subjective aesthetics, and
personal communication with game designers. We also use an
evolutionary approach but strive to make the underlying model
more parsimonious and transparent.

Togelius and Schmidhuber also explore the evolution of
game designs [8]. They consider designs to be fun insofar
as a neural net is able to learn to play that game, arguing that
it is the process of learning to master a task that ultimately
provides pleasure. However, the effectiveness of this approach
could be limited by the degree to which neural networks are
able to mirror the experience of human players.

Hastings et al. [9] evolve weapons for a space-themed video
game. The fitness of a given weapon design is inferred from
the behaviour of the player as the game progresses; if the
player uses a weapon frequently, similar weapons are made
available. Conversely, if a weapon is left unused, it appears
less frequently. This approach is an example of an interactive
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fitness function, where evolution is guided through human
choice. Our work differs as it provides an automatic fitness
function which does not require direct human involvement.

Smith et al. [10] introduce a mixed-initiative design tool for
the creation of 2D platformer games. Their tool allows certain
portions to be specified by hand, with the rest constructed
according to a rule-based system. This system produces levels
that conform to a rhythm-group structure, with contiguous pe-
riods of challenge interspersed with moments of rest. Although
our work shares the goal of permitting human designers a
great deal of influence over the system’s output, we express
rhythm groups explicitly through an objective model instead of
implicitly through the behaviour of a collection of production
rules. Shaker et al. [11] also generate Mario levels to optimize
a model of player enjoyment. Instead of explicitly constructing
a minimal model with author-adjustable parameters, as is
the case with our work, their model is inferred from player
behaviour using a statistical approach; players must explicitly
evaluate how much fun they had during a play session be-
fore the model can predict what future levels will be most
enjoyable. As well, their generative technique is restricted
to adjusting four parameters of a rule-based random level
generator that is specific to Mario, whereas our generative
approach seeks to offer greater control to level designers in a
manner which can be generalized to different types of games.

2) Characterizations of Fun: Fun is a broad term and
any attempts at a precise definition would certainly require
a limitation of scope, as no single statement is likely to
encompass the entire concept. Even restricting the discussion
to the domain of video games does not permit a simple
characterization; Hunicke, LeBlanc, and Zubek [12] even
argue that the term ‘fun’ should be discarded entirely, as it
is too vague to be considered a practical unit of analysis.
They suggest several more precise terms, such as “problem
solving,” “competition” and “discovery.” Similarly, the works
of Malone [13], Apter [14], and Garneau [15] outline various
major components of fun. Although these taxonomies provide
useful terminology, it is doubtful they allow for deeper analysis
of the nature of fun in video games. While they identify
broad categories of fun often encountered in games, they say
little regarding precisely what structures and dynamics are
responsible for creating pleasure.

3) Flow: A common thread among analyses of game
performance and player enjoyment is the notion of “flow,”
as expounded in the work of Csikszentmihalyi [16]. The
psychological state of flow is brought about when a number
of prerequisite conditions are satisfied, such as one feeling
in control of a situation, losing awareness of the passage of
time, and executing a task that is neither too easy nor too
difficult for one’s skill level. Flow is characterized by intense
focus and heightened task performance and is often referred to
as a state of “optimal experience.” Sweetser and Wyeth have
adapted the principals of this concept into a framework, called
“GameFlow” [17] that identifies properties of game designs
which especially facilitate the creation of a sense of flow.

The importance of flow in understanding certain gaming
experiences, particularly the connection between challenge
and fun, is noted by several authors. In A Theory of Fun,

Koster states that “fun is the act of mastering a problem
mentally” [18] and that the process of overcoming difficult
tasks is the source of pleasure in games, whether it is through
identifying patterns in the behaviour of enemy characters
or developing the muscle-memory necessary to execute a
sequence of button presses in a fighting game. If the task is
too difficult, the player does not experience a sense of mastery.
Conversely, if the task is too easy, the player does not need to
develop any skills to succeed. Salen and Zimmerman confirm
the central role of difficulty in providing fun experiences, and
though they emphasize that flow is not synonymous with fun,
they do claim that challenge and frustration are “essential to
game pleasure” [19].

There are definite affinities between the challenge-based
dimension of flow and the Yerkes-Dodson law [20], which
states that performance reaches its maximum when the arousal
felt during the completion of a task is neither too little, nor
too great. Piselli et al [21] have shown that this phenomenon
is equally applicable to the context of video games, even
when considering pleasure, instead of task performance, as
a function of difficulty; players have the most fun when
presented with challenges that are difficult, but not impossible
to overcome.

II. MODEL OF FUN

One of the central contributions of this work is a computa-
tional model of fun as experienced in challenge-based video
games. This model is based on the notion of rhythm groups
as introduced by Smith et al. [22], which are design structures
consisting of repeating oscillations between periods of high
and low difficulty. The relationship between the degree of
challenge posed by a rhythm group and the resulting fun as
experienced by the player is informed by the Yerkes-Dodson
law and aspects of the concept of flow.

Our previous attempt to model this phenomenon [23] was
intended to provide a clear account for the experience of fun
as a result of rhythm groups, and offer meaningful parameters
to allow the model to be adapted to a wide variety of game
context and player abilities. The currently presented model
has the same purpose, but improves on the earlier formulation
significantly. Whereas the previous model could reproduce
level structures that appeared visually similar to those existing
in commercial games, the current model is able to be trained
as a classifier on actual level data, and is able to effectively
distinguish between examples of good and poor level design,
providing much stronger evidence of its effectiveness.

A. Model Scope

Certainly, the notion of fun is a nebulous concept, and
the specification of the model’s characterization of quality
requires particular attention. We emphasize that the purpose
of our rhythm-group model is to serve as a fitness function
in a generative process, evaluating the relative quality of
generated levels. Because our goal is not primarily to model
a psychological state of fun, we use the term ‘fun’ in a more
pragmatic sense: as a measure of the quality of a level’s design.
According to this sense of the term, validation for the model
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does not come from subjective studies with human participants
but, rather, from observations of the game industry’s classic,
enduring examples of good level design. We do not entirely
distance ourselves from the notion of fun as a pleasurable
mental state; certainly, a level of high quality is ultimately
a level which gives pleasure to the player. However, for our
purposes, we assume that the properties that elicit this state of
pleasure are sufficiently manifest in the level designs and that
we can, therefore, understand important qualities of challenge-
based fun by restricting our analysis to the level designs alone.
In other words, the model is considered successful insofar as
it is able to attribute high fitness values to levels which exhibit
structures characteristic of those found in well designed levels.
The important task of validating this assumption through user
studies is reserved for future work.

Our model of fun, and our generative process as a whole,
applies to challenge-based action games. These are games
where the predominant form of pleasure does not arise from
exploration, online social interaction, logical puzzle solving, or
narrative, but rather through reflex-based tests of skill. Indeed,
there are so many aspects to the concept of fun in general that
it becomes necessary to restrict our focus to a single area; we
claim that reflex-based challenge is more amenable to formal
analysis than, for example, narrative or aesthetic pleasure.

To define our scope even more precisely, we are interested in
games in which the challenge is delivered primarily through
the level design. This requirement includes genres such as
platformers and action-adventure games, but notably excludes
genres such as fighting games and sports games. In these
games, the nature of the challenge, and ultimately the fun
experienced by the players, is primarily a function of the skill
of the opponents (artificial or human) or of the rules and
controls governing the game mechanics. The levels of such
games serve merely as an aesthetic backdrop to frame the
game and do not serve as a promising target for automatic
generation. This distinction justifies the use of our model as
a direct fitness function for level evaluation, a notion which
Togelius et al. [1] defines in contrast to simulation-based
fitness functions, which depend on a dynamic observation of
actual game-play to assess quality.

B. Model Design

The model’s purpose is to estimate the amount of fun pro-
vided by a particular level, based on that level’s configuration
of challenge. The model depends on the notion of rhythm
groups, similar to those described by Smith et al [24], but
with important distinctions. Whereas Smith et al. describe
rhythm groups in terms of timed sequences of button presses,
analogous to rhythmic beats in musical compositions, we
emphasize the more general notion of oscillating challenge
over time.

Our model attributes high values of fun to levels containing
rhythm groups that resemble those found in actual games, and
its ultimate purpose is to evaluate and guide the output of our
generative system. For the model to be deemed useful, it must
reward levels which exhibit a number of important properties
that are noticeably present in real-world levels.
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Fig. 2: Depiction of the challenge events of 7 of the 28 levels
used to inform the design of the model of fun. Horizontal
scale is in 16× 16 block units. Note the visible clustering of
challenge events into rhythm groups.

1) Level Test Cases: Twenty-eight levels taken from Super
Mario Bros. were used to inform the design of the model.
These levels were chosen according to the degree to which
their design contributed to the ultimate challenge dynamics
of the game. This criteria excluded “boss levels,” as the
difficulty of these levels is primarily determined by the patterns
of movement of the final enemy. Some other levels were
excluded, such as the ones containing a “Cloud Koopa” enemy,
who follows the player, hurling new enemies for the duration
of the level. Underwater levels were also excluded due to their
significant difference from the rest of the game. Excerpts from
some of the 28 chosen levels are shown in Figure 1.

The levels were reconstructed by Ian Albert from recorded
screen captures of play sessions, which are made available
on his website [25]. We convert these screen captures into
a format more amenable to analysis through computer vision
techniques; the basic sprites corresponding to the various types
of blocks and enemies are identified, and the location and
distribution of each object type is found through template
matching. We determine enemy locations from their sprite
coordinates and find hole locations by detecting gaps in the
blocks located at the bottom of the level. This information is
converted into a time-series representation of the “challenge
events,” a signal that is zero everywhere, except for unit
impulses at the places where enemies or holes are located.
The particular distribution of these challenge events is what
we hypothesize as predominantly affecting the amount of fun
had by players. Examples of some of the resulting time series
are shown in Figure 2.

From examining the 28 test cases, we draw the following
generalizations, which we will later use as evaluative criteria
for our model:

1) Too much continuous difficulty is undesirable. Though
each rhythm group presents the player with a high degree
of challenge, it is not so great as to cause frustration and
a reduced sense of pleasure for the player.

2) Rhythm groups are not necessarily strictly periodic.
They certainly exhibit a cyclical pattern; however, there
is no evidence that there is a predominant frequency
to the amplitude of challenge over time. Levels with
variously spaced rhythm groups should not be penalized.

3) The model should account for players of different skill
levels. The model should not be fragile in the sense that
it applies only to a single, idealized player but should
rather be adaptable to a wide variety of players through



4

Fig. 1: Segments of four of the 28 levels used to inform the design of the model of fun.

the manipulation of a few, semantically meaningful
parameters.

4) Rhythm groups should conform to a reasonable scale
on the order of seconds; it should not be possible for
a generative system to exploit the model with obvious
degenerate constructions, such as levels containing a
single rhythm group lasting for the entire duration of
the level. The model is most useful for the purposes of
level generation if it is sensitive on a small scale and is
able to identify even minute improvements in a level’s
layout.

C. Model Formalization

1) Challenge: Because rhythm groups are defined in terms
of challenge dynamics, our model presupposes the existence
of a suitable technique to measure the change of challenge
over time. It is outside the scope of this work to address
the notion of challenge generally; thus, we must assume that
the model is provided with a challenge metric c(t), which
returns, for a given level, the degree of challenge at the time
t. Certainly, the manner in which this value is calculated will
vary depending on the game context. For example, with Mario
we use a challenge function that identifies a portion of a level
with any given value of t, and associates difficulty values based
on the design of the level at that given point. In particular, a
large gap with a small margin of error for mistakes will be
attributed a relatively high value of difficulty, whereas a large,
straight segment with no enemies will be given a challenge
value of zero.

The construction of the challenge metric entails certain
simplifications. For one, we must treat challenge as a single
dimensional value. We also assume that the challenge metric
is always non-negative. While the particular values do not
matter (all we are concerned with is relative ordering), we take
zero to represent the lowest possible challenge experienced in
the game. We also depict challenge as a value that can be
sampled at a single point t. Sections IV and V provide example
formulations for c(t) in the context of two different games
and demonstrate the modeling of challenge as instantaneous
impulses, that is, formulating c(t) as a sum of Dirac delta
functions (unit impulses), as illustrated in Figure 3. Finally,
we take the value of challenge to represent the difficulty
of a certain level segment absolutely, that is, irrespective of
player skill. Thus, if we were to suggest a possible unit
of measure for the challenge metric, these units would be

constant for everyone, not relative to a particular personal
experience of that level. Again, this does not prove to be a
problem as the model provides threshold parameters which
account the fact that skilled players would be capable of
enjoying higher degrees of challenge than a player with less
skill. In other words, skilled players could be exposed to a
higher amount of these hypothetical “challenge units” before
becoming frustrated.

It must be emphasized that because c(t) is ultimately used
as a component of an automatic fitness function, it needs to be
calculated without any human input; it must be possible to find
a reasonable estimate of a level’s configuration of difficulty
over time simply by analyzing the level’s layout. This is the
primary reason why we restrict our discussion to challenge-
based games in which the difficulty is mostly a function of
the level design.

2) Modeling Fun: The determination of a level’s quality
consists of a two-pass process. First, the level is partitioned
into a set of n rhythm groups with boundaries located at times
t0, t1, . . . , tn. The identification of rhythm-group boundaries
is governed by a greedy algorithm that identifies periods of
sufficiently low challenge, which are identified as periods of
relaxation. A window of size Twindow is shifted along the
challenge function, and positions the boundaries at points
where the total amount of challenge in the window is less
than the threshold m. More precisely, boundaries are located
at positions t where

∫ t

t−Twindow
c(t) dt ≤ m. After a boundary

is associated at a given point in time, the window does not
place any more boundary points until after it has witnessed a
period where the challenge temporarily exceeds m. Otherwise,
extended periods of low challenge would be identified with
a dense interval of infinitely many rhythm groups. Put more
simply, the greedy process only identifies a new period of
relaxation until after an intervening period of challenge has
elapsed. A rhythm-group boundary is always placed at the
beginning and end points of a level, and because the process
is greedily run from the beginning to the end, it produces a
unique segmentation.

With this segmentation in place, it is possible to identify the
level with a fitness value. A level is rewarded for each rhythm
group that contains the appropriate amount of total accumu-
lated challenge, which we refer to as “anxiety,” specified by
the upper threshold M . Formally, if the amount of anxiety
contained in rhythm group i is given by ci =

∫ ti
ti−1

c(t) dt,
then the amount of fun,f , attributed to the level as a whole is
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Fig. 3: Illustration of rhythm group i in the context of Mario.
Vertical arrows represent the challenging events (holes) as unit
impulses, and the curve represents the amount of accumulated
challenge in the time window. Rhythm-group boundaries are
located at points ti−1 and ti, because the windowed challenge
temporarily decreases below the threshold m. The accumu-
lated challenge in the entire rhythm group, ci, corresponds
to the integration of the impulses located between boundaries
ti−1 and ti .

defined by (1).

f =

n∑
i=1

2ci
M
− c2i
M2

(1)

D. Model Characteristics

The numerical response of the model is demonstrated in
Figure 4, which illustrates the amount of fun in a particular
rhythm group as a function of the accumulated challenge in
that rhythm group. Recall that accumulated challenge—that is,
challenge integrated over a period of time—is referred to as
“anxiety.” In other words, where c(t) represents the amount
of challenge present at the instantaneous point t, ci represents
the total amount of challenge integrated over the duration
of rhythm group i, which constitutes a quantity of anxiety.
The rhythm group attains its maximal fun potential when the
amount of anxiety present is exactly M . The fun provided by a
rhythm group decreases if the amount of anxiety experienced
in that group is greater or lesser than this critical point. This
function is evaluated independently for each rhythm group,
and the fun for the entire level is the sum of each independent
evaluation.

We define the formula depicted in Figure 4 in order
to mimic the famous “inverted U” shape described by the
Yerkes-Dodson law [20], which essentially states that task
performance is optimal if arousal is neither too high nor too
low. Piselli et al. [21] have shown that this phenomenon is
equally applicable to the context of videogames, even when
considering pleasure as a function of difficulty instead of
task performance. Our model, then, idealizes this phenomenon
within a computational setting, and applies it at the scale of
individual rhythm groups.
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Fig. 4: Fun, f , as a response to increasing anxiety (accu-
mulated challenge), ci, when M = 1.0, in the context of a
single rhythm group. The response is defined by the function
f = 2ci

M −
c2i
M2 .

M Anxiety

0 50 100 150 200 250

t

0.0

2.5

5.0

7.5

10.0

A
nx

ie
ty

(a) Constant M

M Anxiety

0 50 100 150 200 250

t

0.0

2.5

5.0

7.5

10.0

A
nx

ie
ty

(b) Varying M

Fig. 5: Challenge time series with high fitness, as induced by
the model with Twindow = 10, and m = 1. The curve depicts
accumulated challenge in each rhythm group (ci). Notice that
the anxiety in each rhythm group attains M .

To illustrate the effect of using this model to guide a
generative system, we employ the model as a fitness function
in a genetic algorithm that evolves challenge time series
directly, with no reference to an actual game context. The
genotype is a variable-length list of challenge locations, which
corresponds exactly to our representation of the 28 levels
drawn from Mario. We use typical GA settings, with crossover
at 0.9 and mutation at 0.05, and stop the evolutionary run when
progress has stalled for 10 generations. The results are shown
in Figure 5.
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Our model satisfies the four motivating properties outlined
in Section II-B. First, it is evident that the model penalizes
levels with excessively high difficulty values; the reward for
a given rhythm group attains its maximum at the value M
and decreases quickly after that threshold has been surpassed.
Second, there is nothing in the formulation that encourages
strict periodicity; fitness is rewarded solely based on the
amount of challenge present in a rhythm group and is not
predicated on the rhythm group conforming to any specific
width.

As well, the model can easily and intuitively be adjusted to
account for players of different skill levels. The parameter M
corresponds to the skill of the player, and can be raised or low-
ered to create levels with higher or lower levels of difficulty.
As Figure 5(b) shows, this parameter can even be adjusted
over the course of a single level, providing the designer with
the ability to control the overall arc of challenge at a high
level, in this case creating a level with a very challenging
mid-point with easier portions at the beginning and end. It
would similarly be possible to adjust m dynamically in order
to raise or lower the lower-bound of anxiety required to trigger
rhythm group boundaries.

Finally, the above model does not lead to degenerate cases,
as rhythm groups that are too long impose a low upper bound
on the total amount of fun that can be attributed to a level. If
a level were to be identified as consisting of a single rhythm
group, then the amount of fun attributed to that level would
be, at most, 1. Any level with more numerous (and smaller)
rhythm groups will certainly be able to exceed that value and
be favoured for selection. On the other hand, rhythm groups
must be at least a width of Twindow, which places a lower
bound on their size. In this way, these two bounds ensure that
rhythm groups exist at a scale that can allow a level design
to be analyzed at a meaningful resolution—on the order of
seconds, not minutes.

E. Learning Parameters

Provided that a suitable challenge metric c(t) is defined
and that values are specified for the parameters M , m, and
Twindow, the model is able to estimate a level’s entertainment
value. However, it is possible to perform the reverse operation,
beginning with a set of levels of a known entertainment value
and working backward to infer the specific model parameters
that reproduce the observed values. This task is an instance
of an expectation maximization problem, with the goal of
finding model parameters that account for an observed set
of example levels. By following this procedure, it becomes
possible to mimic the particular challenge characteristics of an
existing game; given a set of levels that are considered to be
well designed, the model can be trained to reward levels with
similar challenge configurations. This could be an effective
way to expand the content of a game, as any automatically-
generated levels would exhibit the same difficulty patterns as
the human-designed levels.

The inference of the model parameters also serves as a
means of validating the model itself. If certain parameters
allow the rhythm-group model to successfully distinguish

between well-designed and poorly-designed levels, it stands
to reason that the model is sensitive to relevant characteristics
of high quality level design. Indeed, this validation is of critical
importance when asserting the usefulness of analyzing levels
in terms of rhythm groups. We do not currently rely on qual-
itative, subjective evaluations of fun (such as questionnaires)
to evaluate the model; instead, we can assess the model’s
effectiveness by treating it as a classifier of existing, real
world levels, judging its performance in the same way many
other machine learning techniques are judged. Furthermore,
this approach provides an avenue of testing the model inde-
pendently of any particular generative context. Evaluating the
output of a generative system that is based on the rhythm-
group model does not necessarily demonstrate that the model,
itself, is responsible for the quality of that output; it could
be the case that the generated levels are fun only because of
some felicitous property of the generative system. However,
in evaluating the model in isolation, we can more confidently
defend the use of rhythm groups as a meaningful analytical
tool.

1) Classification Results: It proves to be the case that the
model is, indeed, able to successfully distinguish between the
challenge time series of the 28 levels taken from the original
Super Mario Bros. game, which are considered to be examples
of good level design, and 30 time series that were crafted to
represent examples of poor level design. We constructed the
30 negative examples to represent properties that would be
obviously undesirable in well-designed levels, arguing that the
model would certainly need to be able to identify these levels
as poorly designed before it could be seen as effective. In that
sense, this experiment establishes base-line functionality and
serves as a “sanity check” of the model’s usefulness.

Because we have seen that actual levels have no regular
periodicity, we have generated negative examples that do
exhibit a regular, periodic structure. We have 14 negative
examples intended to represent levels that are clearly too
difficult. Some contain challenge impulses located 1 to 3 units
apart for the entire duration of the level, while others contain
bursts of 20 contiguous challenge impulses located between
20 and 30 units apart. Similarly, we have 16 examples of
levels that would be too easy, with single challenge impulses
separated by 20 to 30 units of space.

The model can be converted to a classifier through the ad-
dition of an extra parameter, θ, which represents the threshold
of fun above which a level is considered to belong to the
class of well-designed levels. For the sake of convenience,
we train the classifier using the evolutionary system we have
in place, which was, indeed, able to find effective model
parameters for this classification task. We treat model pa-
rameters as individuals in a population and define a fixed-
length genotype defined by the tuple (Twindow,M,m, θ). The
fitness of a set of parameters is given by the proportion of
correct classifications of the training data. Optimal values were
routinely found within the span of a few generations, and
evolution was stopped if there was no fitness improvement
after 5 generations.

The experiment was conducted as a 10-fold stratified cross
validation by randomly partitioning the 58 training examples
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Parameter Mean Variance
Twindow 9.5 6.6
M 7.3 3.5
m 1.5 0.2

TABLE I: Mean and Variance for the 10 optimal parameter
settings found through cross validation.

(consisting of the 28 real Mario levels and the 30 hand-
designed negative examples) into ten groups of five or six
examples, with roughly three positive and three negative
examples per group. The model was then trained on each of
the ten different groups formed by removing one of the sets for
validation purposes (so that the same data points were never
used for both training and validation). The model was quite
successful at distinguishing our real levels from the poorly
designed levels; with only two false negatives, it achieved
precision score of 1.0 and a recall score of 0.93.

Also encouraging is the fact that the optimal parameters
conformed to their intuitive roles in the function. As shown
by their mean values in Table I, rhythm groups corresponded
to periods containing an average of 7 challenge impulses, and
inspection of the 28 example levels reveals visible clusters
of challenge events containing roughly that many items. It
is reasonable that a period of about ten blocks with only a
single hole or enemy (according to Twindow and m) would
constitute a rhythm group boundary. In other words, it is a
reassuring result that the parameters which correspond with an
intuitive, visual inspection of actual Mario levels are precisely
the parameters that lead to successful automatic classification
under the proposed model.

III. IMPLEMENTATION

The generative process is ultimately a search through the
space of possible designs. The system attempts to find a
particular level that demonstrates a good configuration of
rhythm groups and that possesses, therefore, a high fun value.
This section goes into more detail regarding the particular
techniques used to traverse this space successfully.

At the core of the approach lies a genetic algorithm (GA),
for which each potential level design is represented by a
genetic encoding. We extend the basic algorithm with new
features that help to overcome some difficulties associated
with evolutionary search. Constraint satisfaction methods are
employed to form a hybrid system that effectively optimizes
the value of fun for levels while simultaneously observing the
strict constraints inherent to level design.

A. Problem Domain

Level design remains a challenging AI search problem for
two primary reasons. First, it is a task characterized by high
dimensionality; a single level design in our system contains
hundreds of degrees of freedom. Genetic algorithms are an
effective tool when approaching this kind of problem, as
they are well suited to such high-dimensional search spaces.
However, level design is also a highly constrained task. Level
elements must be arranged in such a way as to ensure that

the player is able to traverse the level. For example, in Super
Mario Bros, if a platform was placed too far from a ledge
for a player to reach, the entire level would be rendered
unplayable. An objective function would typically associate
completely broken levels such as this with a fitness value of
zero. Because a small change in the positioning of a single
element of a level can drastically change the objective quality
of the level, the problem is said to have a highly discontinuous
fitness landscape, suggesting the problem is poorly suited to an
evolutionary approach. In cases where the constraints between
solution elements are critical, constraint satisfaction methods
are more appropriate.

The generative approach presented in this paper is con-
structed to address both concerns simultaneously, and is an
example of a hybrid constraint solver and evolutionary sys-
tem [26]. Such systems strive to observe the constraints of the
problem domain while exploring a high dimensional search
space in order to maximize an objective fitness function.

B. Genetic Representation

The genetic representation of a level is a variable-sized,
unordered set of design elements (DEs). Design elements are
atomic units that combine to form a game level. Intuitively,
DEs represent the components a human level designer would
arrange when manually constructing a level for a game. For
example, a single enemy in Mario is represented as a DE. A
given game will include a number of different types of DEs,
which together express the breadth of elements available to
the game designer. More detailed examples of constructions
of DEs for specific games are offered in Sections IV and V.

Each type of DE is defined by a number of parameters and
is essentially a tuple containing floats, integers, and Booleans
that represent the characteristics of that DE. For example, in
an adventure game, an enemy DE might have two dimensions
representing its horizontal and vertical position, one dimension
representing its strength, and a Boolean dimension determining
if it is armed or unarmed.

1) Genetic Operators: Mutation is accomplished with re-
spect to a single DE. A single mutation operation can either
be the addition of a new random DE to the genotype, the
deletion of a DE from the genotype, or the modification of
one of a DE’s constituent property dimensions. A new DE can
be created by selecting from one of the game’s basic types
of DE and setting its dimensions to random values in their
respective domains. Mutation of a DE is achieved by selecting
a new value for a random parameter. If the parameter is a real-
valued number or an integer, the parameter is perturbed to a
degree defined by a Gaussian distribution. If it is an unordered
categorical variable (including Boolean parameters), it is set
to a new allowable value with uniform probability. Each DE
dimension can also be associated with a scaling parameter
that affects both the scale of the Gaussian distribution and
the variance of the mutation that is applied to a particular
dimension.

The crossover operator is similar to variable-point crossover
but modified slightly to be compatible with our representation.
Standard variable-point crossover is achieved by picking a
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random cut point in the two parent genotypes and swapping
two halves of each split parent genotype to create two new
offspring. Our genotype representation consists of an un-
ordered set of DEs, and typical crossover operators are defined
in terms of ordered, linear genotypes, so standard variable-
point crossover cannot be applied directly. However, because
our DEs represent substructures with spatial position, we can
impose a linear order by sorting along a spatial dimension.
This approach is applicable to any n dimensional space; every
crossover involves picking a dimension at random, sorting
by that dimension, and behaving exactly as a variable-point
crossover on the now-linear representation. For example, in a
two-dimensional context, the parents will be split by a random
horizontal or vertical plane, and the offspring will be formed
by taking all the DEs that lie to one side of the plane from the
first parent, as well as all the DEs that lie on the other side
of the plane from the other parent.

This approach serves to draw together within the genotype
DEs that represent level structures that are in close proximity,
providing the property known as gene linkage [27]. An impor-
tant aspect of any genetic representation is the strength of the
gene linkage, which determines the efficacy of the crossover
operation in preserving useful modular sub-structures. In the
worst case, when the DEs have an arbitrary ordering, the
genetic algorithm degrades into regular hill-climbing (albeit
with large, random and disruptive changes interspersed with
smaller mutations). Strong gene linkage, however, is what en-
ables genetic algorithms to naturally preserve high-fitness sub-
structures throughout a population, which would be otherwise
destroyed through small-step mutations.

C. Constraint System

Constraint satisfaction (CS) methods are added to the typical
genetic algorithm structure in order to address the challenges
of a highly constrained solution space with a discontinuous
fitness landscape. We use constraint satisfaction to repair the
genotypes that are subjected to breaking changes. We use two
distinct forms of CS, which address two particularly relevant
forms of level design constraints. Constraints can be formu-
lated as simple, local, spatial relations such as “the object
X must not overlap the object Y .” These constraints can be
solved with the “Tier 1” constraint satisfaction system, which
immediately alters the genetic representation to directly satisfy
the constraints. Not all constraints can be easily expressed in
terms of local, spatial relations, however. For example, the
constraint “there must be an unblocked path between the points
A and B” cannot be easily expressed as a geometric constraint
between two elements. These more complex constraints are
handed by the “Tier 2” constraint system.

1) Tier 1 System: Tier 1 is an example of a typical
constraint solving algorithm that employs variable selection,
domain pruning, and backtracking. We use, specifically, the
JaCoP open source Java constraint solving library [28] as the
foundation of our approach and modify it to better suit our
use of it as a reparation step in a genetic algorithm. JaCoP
is particularly useful as it features a geometric constraints
module which allows many constraints typical of spatial

arrangements to be straightforwardly expressed and efficiently
solved.

Because of JaCoP’s role as a genotype reparation step in
a larger process, we are concerned with more than simply
finding a set of values that satisfy the problem constraints.
We want to ensure that the reparation process modifies an
existing genotype as little as possible in its attempt to provide
a viable solution. The benefits of this are twofold. First,
because the genetic algorithm uses the rhythm-group model
to evaluate designs, the more we alter a given level design
to satisfy game-specific constraints, the more likely we are to
disrupt the rhythm-group structure and reduce the effectiveness
of the model in producing fun levels. A second benefit to
altering the genotype as little as possible is the possibility
of allowing human designers direct control over portions of
the system’s output. We can use the same machinery that
minimizes genotype modifications to ensure that the system
respects the designer’s adjustments to the level and alters the
level in such a way to minimize disruptions to content made
by human designers.

Our constraint satisfaction problem can then be framed as a
search for values for the DE dimensions that minimize a cost
function that represents how much they are altered. This is
achieved by extending the JaCoP constraint satisfaction library
with alternate variable selection and value selection processes.
Constraint solving requires picking both a variable to alter and
a new value for that variable and our approach is to prioritize
the choice of values so as to reduce the potential negative
impact. In other words, if the original value of a certain DE
dimension, as set by the GA, is 3, the values are chosen in the
order of increasing distance, e.g.: [4, 2, 5, 1, 6, 0, 7,−1, . . .].
We do not claim that this approach always produces the
absolute global minimum disruption, but it is more effective
at approaching this goal than an arbitrary value assignment.

Every individual that can be successfully repaired through
the Tier 1 system is fixed and placed back into the population.

2) Tier 2 System: The Tier 2 System handles individuals
that cannot be repaired through the Tier 1 process, and can sat-
isfy certain constraints which cannot be easily expressed using
the primitives provided by the JaCoP system. The subsystem,
which is described in earlier work [29] is modeled after the
Feasible/Infeasible 2-Population Genetic Algorithm (FI-2pop),
developed by Kimbrough et al. [30]. The FI-2pop consists of
two populations which are evolved in parallel, one labeled the
“feasible population,” which contains all the individuals that
satisfy the constraints of the problem domain, while the other
is referred to as the “infeasible population,” which contains
those individuals that do not satisfy the constraints. In our case,
the feasible population contains all the levels that satisfy the
constraints of the game in question as well as those individuals
that can be repaired by the Tier 1 constraint solver so that
they do not violate any constraints. The individuals which
cannot be repaired, or which violate constraints that cannot
be expressed in the terms of the Tier 1 subsystem, are placed
in the infeasible population.

Whereas the feasible population is evolved according to our
primary fitness function, that is, by the rhythm-group model
of fun, the infeasible population is evolved according to a
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fitness function which seeks only to satisfy the still-violated
constraints. This is done with a measurement of the degree
to which a given level violates the set of constraints. By
minimizing this function, levels ultimately reach a state where
they violate no constraints, at which point they can be moved
back into the feasible population. Because Tier 2 constraints
are enforced through a fitness function, they can express any
arbitrary, global constraint on a level design; they do not need
to be limited to spatial relationships between individual level
elements. An example of a global property that is difficult to
express in terms of local constraints is connectivity—ensuring
there is a traversable path from the beginning to the end of a
level.

D. Summary

This architecture maintains all the advantages of the top-
down approach. It allows the level design criteria to be
described declaratively, irrespective of the actual generative
implementation. Procedural generative processes are restricted
to the reification of the DEs (through the genotype to pheno-
type mapping process) and our architecture provides a clear
separation between the mechanics of the level creation and
the evaluation process. Furthermore, this system is capable of
respecting the designs provided by human content creators;
the DEs could be provided by a designer through their usual
level design editor and given special status in the system.
The GA treats these DEs as fixed and immutable and does
not alter them under mutation or crossover. Likewise, the
constraint satisfaction system gives a higher weighting to
the variables corresponding to the DEs that are provided by
the human designer when altering their values, preferring
to mutate automatically-generated DEs provided by the GA
than to change the DEs specifically placed by the human.
Essentially, this amounts to a system that works around and
with a human designer to “fill in the blanks,” upsetting as little
as possible both the guidance of the rhythm-group model and,
more importantly, the designs provided by the human.

IV. MARIO

In this section, we outline a concrete application of the
model and generative framework in the context of an actual
game, namely the 2D platformer Super Mario Bros. First, we
describe a challenge function for this game in order to apply
our rhythm-group model. We present a way to model this
design task in terms of DEs and constraints, and discuss the
results.

The system produces levels that are directly playable. The
implementation used is an open source clone of Super Mario
Bros. called Infinite Mario. It is written by Markus Persson in
the Java language and is currently used in several video game
research problems, including the Mario AI Championship,
where it functions as a platform for testing the performance of
various AI character controllers, learning agents, and genera-
tive systems, such as our own. Infinite Mario implements many
elements of the original game, including Super Mushrooms,
Fire Flowers, Goombas, Koopas, Spiked Koopas, Bullet Bills,
and Piranha Plants. It is not a completely faithful replication,

though, as it does not include some game elements, such as
moving platforms or the Cloud Koopa character, who hurls
Spiked Koopas from the sky. However, a large proportion of
the game play is still intact, and, judging by its popularity on
online gaming sites such as NewGrounds [31], where it has
been played by over 11,000 people, it can be considered a
legitimate representative of the platformer genre.

A. Challenge Metric

One should recall that the rhythm-group model serves as
the core of the genetic algorithm, and, since the rhythm-group
model is defined in terms of challenge, a method for estimat-
ing the challenge of a given level is required. In challenge
based games, difficulty arises from the precision required to
execute a properly-timed sequence of button presses. In Mario,
difficult segments correspond to the locations where enemies
are densely located and where the platforms are narrow. Easy
segments are, conversely, the areas where there is very little
precision required to successfully traverse the section. More
technically, if we consider the set of all possible sequences
and timings of button presses, a challenging section can be
defined as sections where the ratio between sequences of
button presses that result in successful traversals to sequences
that result in unsuccessful traversals is relatively small. It
is this notion which motivates the metric of Compton and
Mateas [32], in which the challenge of a particular jump is
defined as the ratio between the number of trajectories that
traverse the gap to the number of unsuccessful trajectories
which result in falling into the gap. Our challenge metric is
similar, and is shown in Equation (2), where d(p1, p2) is the
Manhattan distance between the platforms p1 and p2 minus
the sum of the two “landing footprints,” fp, of both platforms
plus a constant.

c(t) = d(p1, p2)− (fp(p1) + fp(p2)) + 2fpmax (2)

The landing footprint is a measurement of the length of a
platform, bounded to the maximum distance a player can jump,
fpmax. This measure is important, as there is a much greater
margin of error when jumping to a wide platform than to a
narrow platform, and it is a less challenging manoeuvre. The
constant 2fpmax is added to ensure that this difficulty measure
is non-negative.

We extend this basic formula to account for the challenge
posed by the enemies in the level. Because all enemies in
Super Mario can be defeated by jumping on, or over them,
we can regard each enemy as a gap in the level. We measure
challenge in the same way as with platforms, save for an extra
constant Ce, which is added to account for the fact that since
the enemies are moving, there is a slight increase in difficulty
as opposed to a static hole of the same size. These parameters
are all assigned values through the learning process outlined
in Section II-E.

B. Design Elements

A Mario level is a grid of 250 × 15 block units with a
floor consisting of blocks occupying the entirety of the 14th



10

and 15th rows of the level array. The beginning and end level
points, which are required by Infinite Mario Bros. to determine
the spawn position and victory criterion, are set to be (0, 13)
and (230, 13), respectively. Notice that, because levels contain
a floor by default, holes must be created explicitly in the
environment through DEs.

1) Basic DEs: The system is composed of the following
basic DEs:

• Block(x, y). This DE is a single block, parameterized by
its x and y coordinate.

• Pipe(x, height, piranha). A pipe serves as both a platform
and a possible container of a dangerous piranha plant.

• Hole(x,width). This specifies a hole of a given width in
the ground plane.

• Enemy(x). This specifies an enemy at the given horizontal
location.

• Platform(x,width, height). This specifies a raised plat-
form of a given width and height.

• Staircase(x, height, direction). Staircases are common
enough to warrant a dedicated DE. The direction specifies
whether the stairs are ascending or descending.

2) Compound DEs: Ten additional DEs are defined, which
are used in conjunction to the basic set. These elements drawn
from common elements seen in both the original Super Mario
Bros. as well as one of its sequels, Super Mario World [33],
and represent compound arrangements of the basic DEs.

• Blocks(x, height,width). Several blocks in a horizontal
row.

• Hill(x,width). A “background” hill that can be either
jumped upon or bypassed.

• Hill-with-enemies(x, height, n, type). A Hill with n ene-
mies of the type variety.

• Cannon(x, height). A cannon fires “Bullet Bill” enemies
toward the player.

• Steps(x,width, height, dir, n). This DE represents when
the ground itself rises or declines (specified by dir) to
height in n distinct steps.

• Enemy-pit(x,width, type, n). This specifies a group of
enemies at the given horizontal location, situated in a
depression in the ground.

• Enemy-pit-above(x,width, type, n, left, right). This speci-
fies a group of enemies at the given horizontal location,
bounded by rocks, pipes, or cannons, as specified by left
and right.

• Enemy-row(x, type, n). This specifies a group of enemies
at the given horizontal location.

• Coin-arc(x, height, n). This specifies a number of coins
at the given horizontal location.

• Impediment(x, type). A high pipe or wall that can only be
mounted by jumping from another pipe, a row of blocks,
or a background hill. This DE constructs both the obstacle
and the helper object needed to cross it.

Though there is certainly additional complexity involved in
specifying more DEs, each element is completely independent
and can therefore be developed and tested independently. As
well, though the number of constraints between DEs could
increase exponentially as more are specified, many of the com-

pound DEs are subject to identical constraints. For example,
most of the DEs form a set of elements whose members cannot
overlap with each other. Thus, it is not necessary to manually
specify pairwise constraints between each DE.

3) Constraints: We define, in addition to the DEs, a number
of constraints that express the requirements for a playable
Infinite Mario level. As previously noted, each constraint
in our system can specify a method for penalizing levels
proportionally to how greatly they violate the constraint.

• require-exactly(n, type). This constraint specifies the de-
sired number of certain types of design elements to be
present in the levels. As a penalty, it returns the absolute
difference between the counted number of instances of
type and the desired amount n.

• require-at-least(n, type). This function penalizes levels
that contain less than n of a given type, returning 0 if
n ≥ type and returning type− n otherwise.

• require-at-most(n, type). This function penalizes levels
that contain more than n of a given type, returning 0
if n ≤ type and returning n− type otherwise.

• require-no-overlap(type1, type2, ...). This function states
that the specified types are not to overlap in the phe-
notype. It is, therefore, only relevant for design elements
that contain a notion of location and extent. In the present
application, we specify that pipes, stairs, enemies, and
holes should not overlap one another. As a penalty, the
number of overlapping elements is returned.

• require-overlap(type1, type2). This function specifies that
type1 must overlap type2, though type2 need not neces-
sarily overlap type1. We use this function to require that
platforms must be positioned above holes. The number of
type1 elements that do not overlap with a type2 element
is returned as a penalty.

• traversable(). This function is to ensure that a player can
successfully traverse the level, meaning that there are no
jumps that are too high or too far for the player to reach.
This is determined using a greedy search between level
elements. The penalty is the number of elements from
which there is no subsequent platform within a specified
range, that is, the number of places at which a player
could get stuck.

All the previous functions are specified such that a value of
zero reflects a satisfied constraint and a positive value denotes
how severely a constraint is violated. Therefore, any individual
level that is given a score of zero by all of the above functions
is considered a feasible solution and is moved into the feasible
population for further optimization. The feasible population is
evaluated using our generic model of challenge-based fun. We
adapt this model to 2D platformers by providing a method
for estimating challenge at any given point in a level. This
is done by a function that returns a challenge value for each
jump required between platforms, with difficult jumps being
rated higher, and a set constant for each enemy in the level.

With no pressing concern for efficiency, we choose to set
the mutation rate to 10% of individuals per generation and to
generate the rest via crossover, using tournament selection of
size 3. Finally, following the convention of Kimbrough [30],
we limit the sizes of the infeasible and feasible populations
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to 50. Our stopping criterion is reached if the fitness of the
levels does not improve for 20 generations. The evolutionary
runs took between two to ten minutes on a mid-range dual-
core PC.

Figure 6 depicts segments from some of the resulting levels.
Figures 7–8 depict levels generated with the model parameter
M fixed at 6.0. These levels were the result of contiguous runs
of the system (i.e. they were not singled out according to any
subjective criteria). Figure 9 demonstrates the effect of varying
M . By doing so, levels are created such that the most difficult
portions are located where M is the highest, in this case, in the
center of the level. However, some challenge is still present
throughout the level, and the player is provided with constant
engagement. This ability to alter the model’s parameters offers
designers a unique, high-level way to influence the system’s
output, and illustrates some of the variety of design allowed
by the system and the control that is afforded to the user.

Figure 10 depicts another avenue for high-level control over
the system output. In this case, a constraint was specified
that there should be no Hole DEs in the level genotypes.
The system is able to produce rhythm-group structures while
observing this externally imposed design requirement. By
restricting the presence of certain level elements in this
manner, we can ensure that levels do not all contain the
same proportion of level elements and can therefore maintain
diversity in the system’s output.

Figure 11 demonstrates the potential for our system to allow
for certain portions of the level to be directly authored by
human designers. A small segment of a level is designed by
hand and converted to its DE representation. This translation
is always possible for Infinite Mario, as every basic level
component has a corresponding DE. This translated portion
is fixed in every genotype of the evolutionary population and
cannot be altered by any crossover or mutation operators.
Otherwise, the manually created portion is internally treated
the same as the generated segment of the level and is subjected
to the same constraints and fitness function. For this reason,
the system is able to integrate human and artificial designs
together in a manner that exhibits rhythm groups.

C. Mario AI Championship

This system was entered into the 2010 Mario AI Champi-
onship Level Generation Track, which was held at the 2010
IEEE Conference on Computational Intelligence and Games.
Conference participants were invited to play levels generated
by the various systems and to evaluate them according to how
fun they were. The contest was arranged so that the systems
had to produce levels that adhered to certain compositional
requirements. For example, levels might be required to have
four gaps and three Shelled Koopas. This requirement was put
in place to discourage cheating through the use of systems that
could merely return levels that were pre-designed by hand.
To observe this rule, our system translated the composition
requirements into constraints.

Fifteen participants took part in the event, and our system
placed 3rd out of 6. This is an encouraging result, as our
system, guided by a generic fitness function, was able to
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(a) Generation: 151.

(b) Generation: 138.

Fig. 6: Segments from final levels with extended set of DEs.

rank competitively with systems designed specifically for this
particular game.

D. Discussion

One possible shortcoming of our approach is that the rhythm
group model cannot express diversity; there is no evolutionary
advantage to producing rhythm groups that contain a mixture
of different elements, as opposed to creating levels consisting
of a single kind of element. For example, it is possible for a
level containing only Koopa enemies to have the same rhythm-
group configuration, and thus, the same fitness value, as a
level containing a mixture of enemies and holes. This type of
monotonous design does not seem to occur in practice because
of the stochastic nature of the genetic algorithm. On the other
hand, this restricted diversity in a level’s design might be
considered desirable. In this case, the constraint system can be
used to influence the variety of the level designs by enforcing
a maximum or minimum amount of certain game elements.
For example, it is common to introduce certain enemies only
in later levels of a game; in this case the designer can set a
constraint specifying that levels contain no DEs of this type.
Figure 10 depicts how this high-level control can be used to
create a level with no holes. This kind of high-level control can
ensure that the system produces levels that do not resemble
each other but instead differ greatly in terms of composition
and appearance.

Another potential criticism that might be placed against the
complexity of some of the design elements. Indeed, reifying
some structures, such as staircases, requires an imperative
set of construction instructions to be specified. This type of
bottom-up, procedural approach may seem out of place in a
framework that purportedly minimizes such low-level, game-
specific code. It is important to emphasize that though the
method to build a staircase is, in itself, a bottom-up, rule-based
procedure, the instructions for doing so are parameterized:
the overarching system can manipulate it on a high level by
altering its height, width, and position, in the same manner

as any other level element. In this sense, each DE is treated
as a black box. This policy ensures that all the procedural
knowledge contained within the DEs is insulated not only
from the high level system, but also from other DEs; each
basic level element can be developed and tested independently.
Ultimately, we do not claim to completely eliminate all traces
of imperative generative techniques; rather we recognize that
a certain amount of procedural specification is necessary
but restrict the scope of such techniques, and subject them
to a easy manipulation by the high-level system. Complex
components can be seamlessly used in conjunction with the
rhythm group fitness function and constraint solver in exactly
the same way as any other DE. This flexibility is not afforded
by monolithic, rule-based production systems.

V. ZELDA

To support our claims of generality, we present an applica-
tion of the generative system to a different game genre. In this
section, we target game levels that consist of rooms and doors
arranged in a two dimensional space and are viewed from an
overhead perspective, as opposed to a side perspective as was
the case in the Infinite Mario levels. We do not develop the
construction process in as much detail as the previous example;
instead of attempting to generate levels of comparable quality
to commercial levels, we focus on generating levels that
demonstrate a simple yet essential aspect of the level design
task. The purpose of this simplification is to focus on the core
problem of designing two-dimensional levels, as opposed to
one-dimensional designs. It proves significantly more difficult
to generate levels for this domain, but the fact that our
approach is still able to efficiently create feasible solutions that
exhibit a rhythm-group structure illustrates both our system’s
generality and its promise as a practically usable technique.

A. Game Background

Zelda is an action-adventure series developed and produced
by Nintendo, which centers on the adventures of Link in the



13

02468

M

t

Fi
g.

9:
V

ar
yi

ng
M

.G
en

er
at

io
n

62
9,

fit
ne

ss
10

.5
5

02468

M

t

Fi
g.

10
:

Fi
xe

d
M

,w
ith

no
H
ol
e

D
E

s
pe

rm
itt

ed
.G

en
er

at
io

n
20

2,
fit

ne
ss

11
.5

0

(a) Hand-specified design.

(b) Automatically generated content added.

Fig. 11: The evolutionary system adds content surrounding
the human-specified portion. Notice the highly challenging
portions on either end of the relatively simple middle section.

kingdom of Hyrule. In the course of a typical Zelda game,
Link must successfully overcome the challenges of several
dungeons. Each dungeon adheres to a recognizable pattern
and consists of an arrangement of rooms filled with enemies,
collectible items, and puzzles. For our purposes, we consider
the top-down, 2D game play characteristic of the earlier Zelda
games, most specifically the original game: The Legend of
Zelda [34]. Because finding an optimized arrangement of
rooms is considered a difficult challenge for heuristic searches,
our initial attempts to model this game involve significant
simplifications: at this point we only attempt to produce
dungeon layouts and monster placement and do not consider
the puzzles, keys, and other aspects of the game. However,
promising results in the simplified domain justify further
experimentation.

B. Design elements

The following DEs are sufficient to examine the problem
of two-dimensional room layout as it relates to challenge
dynamics:

• Room(x, y, w, h). A room of dimension w × h with its
origin at the point (x, y).

• Door(x, y). A door located at the point (x, y).
• Enemy(x, y). An enemy located at the point (x, y).

C. Challenge metric

The challenge function is defined in terms of the enemies
the player faces as they move from room to room. Rooms
can be viewed as sets of the entities they contain, so given
a player who enters Room(t) at time t, the challenge at that
point is defined as the number of enemies in that room, or,
more formally, c(t) = |{e ∈ Room(t)}|.

This formulation inherently presupposes that the player’s
path through the rooms is fixed and that Room(t) represents
a single value for each point t. We pick the shortest-path
movement between the entrance point and the exit point as
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the canonical path of the player through a given level. The
entrance and exit points are explicitly defined before evolution.
Certainly, this is a large simplification of the behaviour a
human would actually exhibit when moving through a complex
virtual environment. However, our choice of shortest-path can
be justified by ensuring that the levels contain only a single,
unique sequence of connected rooms from start to finish. In
levels such as these, any path which does not double-back
on itself will be the shortest path. It proves to be simple to
ensure that the generated levels contain no multiple paths or
dead-ends and thus adhere to this linear topology.

D. Constraints

The Tier 1 constraints that can be solved in terms of a
constraint satisfaction formulation, are as follows:

• Room location and dimension values must be multiples of
30. This constraint is equivalent to snapping the rooms to
a coarse grid with cell sizes of 30 units, which simplifies
detecting the property of room adjacency.

• Doors must exist on room edges. This constraint ensures
doors do not exist, for example, in the center of a room.
Enforcing this constraint involves snapping each door to
its nearest wall segment.

• No overlap between rooms. Enforcing that rooms cannot
intersect one other is solved through the manipulation
of the shape and position of the rooms. This is an ex-
ample of a two dimensional geometric packing problem,
which is more difficult to solve than the one dimensional
constraints used in the Mario application. However, the
constraint solving library JaCoP provides geometric ex-
tensions that are able to efficiently solve this type of
problem.

There is only a single Tier 2 constraint that cannot be
expressed as a simple CS problem:

• Connected path from the start point to the end point. Two
rooms are considered connected if they share a common
edge and there is a door located on that shared edge.

To guide infeasible levels toward connectivity, we use the
heuristics listed below. The heuristics are listed in order of the
priority they are given when sorting the level designs. In other
words, any level which receives a higher value under Heuristic
1 will be given a higher fitness than any individual, irrespec-
tive of their Heuristic 2 valuation. Similarly, any individual
that maximizes Heuristic 2 will be favoured irrespective of
Heuristic 3. Note that, in this application, it is more convenient
to specify the heuristics such that positive values are desirable,
as opposed to the convention of positive values representing
penalties.

• Room on start or end points? This heuristic detects if a
room exists at the beginning and ending locations of the
level, returning 0 if neither is the case, 1 if one point is
covered, and 2 if there is a room on both points.

• Max path length from start and end. This heuristic
measures the maximum distance that can be traveled from
the start point and the end point.

• Max path length from other rooms. This heuristic sums
together the maximum distance that can be traveled

starting from every room in the level, other than the start
and end point.

These heuristics serve to guide the infeasible population
toward feasibility. By encouraging the maximum possible
travel distance, the GA favours designs that attempt to connect
multiple rooms together, increasing the probability that a
design will be found that connects the beginning and end
points together. This extra guidance is necessary, due primarily
to the significant increase in the size of search space that the
extra spatial dimension implies; every DE has two significant
dimensions, x and y, instead of just x. Furthermore, a typical
Mario genotype had approximately 40 DEs, whereas the Zelda
levels we considered contained between 60 and 100 DEs.
These two factors lead to a drastic increase of dimensionality,
resulting in levels that would not achieve connectivity without
some form of heuristic guidance. In a sense, these heuristics
serve as an approximation of fitness on partial levels; instead of
assigning a value of 0 to every unplayable level, we determine
how much of the level is traversable (by measuring how far
one is able to walk from a given starting point). Therefore,
these heuristics are not entirely ad-hoc and unmotivated, but
serve as a kind of adaptation of the fitness function to the case
of broken levels.

It should be mentioned that there is no explicit constraint
that enforces the existence of a unique linear path through
the level. Instead, this property is achieved through a post-
processing step. We can create a minimal genotype by at-
tempting to remove each gene in turn, and replacing that gene
if its removal affects the level’s fitness value. Because we
only represent the player’s idealized movement in the c(t)
calculation as a single path, branches and dead-ends cannot
possibly contribute anything to the fitness of a level, and are
therefore always removed by this operation. Doors that lead
nowhere are also removed from the genotype for this reason.

E. Results
Because it is difficult to arrive at feasible levels in this

context, care must be taken when selecting the parameters
for the evolutionary algorithm. For generating Mario levels,
standard GA parameters were sufficient to enable reasonable
evolutionary progress. However, these same parameter set-
tings prove ineffective in the present case. To find useful
values, several evolutionary runs were conducted under a
number of different parameter settings, and the parameters
which consistently produced the highest average rate of fitness
improvement were selected. Evolution was conducted with
5 islands2, each containing 20 feasible individuals and 20
infeasible individuals. Crossover was found to be optimal at
a rate of 0.7, with mutation at a probability of 0.03 per
gene. There was elitism of a single individual, and inter-island
migration was conducted every 50 generations. The stopping
criterion is a lack of progress in all of the populations for 100
generations, as it was rare to witness any improvement after
this point.

2The island model involves evolving several independent populations in
parallel with occasional migrations between the populations, increasing the
chances of escaping local minima in the search space. For more background,
see Tomassini [35].
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(a) Generation: 1142. (b) Generation: 1471.

Fig. 12: Sample generated Zelda designs from two different
runs. Small rectangles denote doors, ×’s denote enemies, and
diagonal lines denote start and end points. Note, in particular,
the higher number of generations required to find feasible
designs.

Two resulting levels are depicted in Figure 12. The rhythm
pattern structure is evident, with highly challenging, enemy-
filled rooms separated by empty rooms. It is also obvious that
all the levels satisfy the connectivity constraint; as expected
there is a single, unbroken path between the start and end
points. The evolutionary runs took between 15 and 45 minutes
on a mid-range dual-core PC.

1) Comparison to Mario results: Though the generated
levels appear simpler in appearance than the generated Mario
levels and the formulation contains fewer DEs and employs a
simpler challenge function, it is, in reality, far more difficult
to generate a feasible level for this context than for Mario.
The combined factors of the higher dimensionality and the
connectivity constraint render it virtually impossible to pro-
duce a feasible level by chance alone. Indeed, there are a
vastly greater number of possible broken levels than feasible
levels; Compared to the Mario application, where 195 out of
1000 randomly generated levels prove to be feasible with no
need for further constraint satisfaction, the Zelda application
produces no feasible individuals at all from chance alone.

The minimal representation adopted in this context was
likely responsible for the high computational cost of evolving
levels. Level connectivity had to be attained through the use of
two different types elements (doors and rooms, corresponding
to edges and nodes in graph terminology) aligned in a fragile
configuration. These difficulties were not present at all in the
case of Mario, where an empty level (consisting only of the
floor, from beginning to end) was still considered feasible.
A Zelda representation which treated doors as a dimension
of a room DE (for instance, as Boolean flags determining
if there are doors on certain sides of a room) would reduce
the number of different types of elements that would need to
be aligned to achieve connectivity, and therefore reduce the
search space significantly. Choices of representation greatly
affect the scalability of generative processes, and future work
must consider these ramifications in more detail.

However, it is not necessarily the number of different DEs
and the complexity of the challenge metric which predomi-
nantly influence the difficulty of generating levels for a given
game; it appears that the nature of the constraints influence the
difficulty of generation to a far greater degree. For this reason,
it is probable that more DEs and a more precise challenge
metric could be developed to allow the system to generate
more interesting Zelda levels, so long as the connectivity
constraints do not become more difficult to satisfy. There is a
likely a reasonable flexibility within the design space provided
by the existing design constraints of single-path connectivity.
It is even possible that single-path connectedness is a more
fragile, and hence a more difficult, constraint to satisfy than
constraints over multiply connected spaces, and levels that
admit multiple paths might prove to be easier to generate.

In any case, the results of this intentionally simple design
context provide evidence that this generative system can
be successfully applied to contexts quite different than 2D
platformers. This application is not intended to demonstrate
the maximal amount of detail and complexity that can be
produced by the system (which was demonstrated in the
Mario application) but rather to determine the system’s ability
to satisfy difficult design constraints in a different game
genre. Indeed, by using exactly the same fitness function and
genetic operators (with some parameter adjustments) viable
levels were generated in a significantly different context while
maintaining all the advantages of the top-down approach: the
model offers high-level parameters which serve to alter the
layout of the rooms to provide higher or lower levels of
difficulty, and the system is still able to incorporate human-
authored content by adapting the output surrounding fixed
components specified by a human designer.

VI. FUTURE WORK

Many avenues for future research are readily apparent. Due
to the initial success of the Zelda context, it would seem
promising that a more comprehensive set of DEs, such as
the ones defined for Mario, could lead to levels more closely
resembling those from the actual game. More constraints could
be considered to model the puzzle aspects of the game. For
example, keys must be attained to access various parts of the
dungeons, which provide the player with various items needed
to successfully defeat the dungeon’s final boss. These complex
constraints seem well suited to being specified as Tier 2
constraints, in a manner similar to the connectivity constraint.
As well, it would be interesting to consider levels containing
multiple paths, instead of requiring singly-connected paths. It
might be possible to allow multiple paths by aggregating to-
gether the results of running each possible path independently,
via the mean, minimum, or maximum output from the model.
As well, many of these constraints can be expressed in terms of
graph grammars, and generative grammars have been applied
to adventure game mission creation by Dormans [36]. As
generative grammars can be evolved with genetic algorithms,
it would be interesting to see if such an approach could be
combined with the model of player enjoyment presented in
our work.



16

It is also possible that this approach could be generalized
to even more types of games. Arcade games such as Break-
out [37] and Space Invaders [38] could have the arrangement
of blocks and enemies determined by the rhythm group model.
As well, layouts for first person shooters could be generated
in a manner very similar to the dungeon layouts as seen in
the Zelda application. This could prove especially lucrative
for large, open world games where a large amount of content
is required.

It would also be desirable to further test the model. Though
we have had the system’s output indirectly evaluated at the
Mario AI Challenge, it would be interesting to see if there
was any discernible correlation between what players found
fun, and what the model predicted as fun. Similarly, one could
attempt to train the model not on positive examples taken from
commercial games, as was the case in this paper, but rather
to train the model to learn a particular player’s preference,
as witnessed by their subjective evaluation of play. There is
also research in the automatic detection of player frustration
in games [39], as well as on statistical methods for modeling
player preferences [40], [41], [11], [42], and it would seem
that those efforts could be fruitfully combined with the current
model.

Finally, because level generation takes on the order of tens
of minutes, it is not currently well-suited to online level
generation, where content is created in real-time as the game
is being played. It is possible the generation time could be
reduced by creating smaller portions of game levels at a time
instead of creating entire levels, as is currently the case. Even
so, it may be feasible to generate levels on the client’s system,
even if they are not immediately available. For instance, should
a player be found to be failing too often, the system could
begin generating a new level in the background, and switch
the current level out for the easier one when it is finished.
If these background generation processes were seeded with
initial populations of levels with relatively high quality, it is
quite possible that acceptable variations for different model
parameters could be found much more quickly than the current
method of constructing new levels from scratch.

VII. CONCLUSION

We have demonstrated an approach to the generation of
video game levels that is founded on an explicit model of
the relationship between challenge and fun. The model is
based on the notion of rhythm groups, which are alternating
periods of high and low challenge that present a player with
an engaging game-play experience. It identifies fun as a
function of challenge with an “inverted-U” shape inspired by
the Yerkes-Dodson law, where a particular rhythm group is
deemed fun if it is neither too difficult nor too easy. The
model’s effectiveness was evaluated by employing it in a
classification task, where it was able to identify levels from
the original Super Mario Bros. with high accuracy.

We have also demonstrated the generality of the approach
in applying the model to two different games. It was relatively
straightforward in both cases to represent the design problem
in terms of a set basic design building blocks, referred to

as design elements (DEs), and a collection of geometric
constraints. We also noted that the size and complexity of
the DE set does not necessarily mean that levels will be
more difficult to generate. Although the Zelda formulation
had a much simpler representation, it proved, by far, more
challenging to produce feasible levels in this context.

Finally, our model provides parameters that correspond
directly to intuitive concepts. In particular, the parameter M
corresponds to the skill of the player, and can be adjusted by
the designer to create levels with various challenge profiles.
This high level control is not typically offered by bottom-
up, rule based approaches where the relationship between the
generative parameters and the final output is not always clear.
Furthermore, humans can directly specify certain portions of
the level by hand, which are then evaluated by the model in
the same manner as the automatically generated content. This
results in the rhythm group structure adapting itself around
the manually created portion of the level; easy portions are
surrounded by difficult sections, whereas simple stretches are
surrounded by areas of high challenge. This natural adaptation
to externally provided content is afforded by the top-down
design of the system. It is our hope that by modelling
challenge dynamics in a high-level, explicit manner will not
only improve the quality of procedurally generated content,
but also contribute toward further research in the analysis and
understanding of the nature of fun in video games.
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